THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics
 MATH2050B Mathematical Analysis I (Fall 2016)
 Tutorial Questions for 29 Sep

Remark: In this course, unless otherwise stated, you can almost never use the following functions, since they are not defined:

- Logarithmic functions and exponential functions.
- Trigonometric functions.
- Any non-elementary functions.

It is always safe to use polynomials and rational functions, however.

1. Show by definition that

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{2}}=0
$$

2. Show by definition that

$$
\lim _{n \rightarrow \infty} \frac{5 n^{2}+2 n+3}{n^{2}+n+2}=5
$$

3. Show by definition that

$$
\lim _{n \rightarrow \infty} \frac{n^{2}+1}{n^{3}-n^{2}-1}=0
$$

4. Let $A \subseteq \mathbb{R}$ be nonempty and bounded above. By the completeness axiom, $s:=\sup A$ exists in \mathbb{R}.
(a) Show that there exists a sequence $\left\{a_{n}\right\} \subseteq A$ such that $\left(a_{n}\right)$ converges to s.
(b) Show that, in addition, the above sequence can be taken to be monotonically increasing (not necessarily strictly increasing).
(c) Show that, if we assume $s \notin A$ in addition, then the above sequence can be taken to be strictly increasing. (Also, think about a trivial example where we CANNOT find such strictly increasing sequence)
5. (Difficult) Let $-1<r<1$, and $k \in \mathbb{N}$. Show by definition that

$$
\lim _{n \rightarrow \infty} n^{k} r^{n}=0
$$

Remark: The above limit provides a useful (except in this course) heuristic that every polynomial grows slower than any (growing) exponential function eventually. Also, it is needed when we calculate sums of the form

$$
\sum_{n=1}^{\infty} P(n) \cdot r^{n}
$$

where P is a polynomial and $-1<r<1$.

